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Abstract

We have studied the dynamics of the correlated diffusion of pairs of

random walkers of opposite signs. The use of populations of such pairs

has been proposed for the Monte Carlo treatment of many-fermion

systems, where the possibility of their cancellation might prevent the

characteristic decay of signal–to–noise ratio. For four model systems–

free fermions, the harmonic oscillator, an N-body system of attractive

and repulsive harmonic forces, and an extensive system interacting by

Pöschl-Teller potentials– we have explored analytically and by compu-

tation the behavior of the time to cancellation as a function of initial

conditions and, equally important, as a function of system size. We

find that for these systems the computational efficiency does not decay

either with large imaginary time or with large N.

1 Introduction

Quantum Monte Carlo (QMC) methods have become an important tool in
the study of many-body systems. They permit accurate solutions of systems
of bosons. No comparable methodology exists for fermionic systems, but with
many theoretical and practical improvements, the fixed-node approximation
has proved to be a powerful tool.
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The impediments to a reliable many-fermion Monte Carlo method that
does not require the specification of a nodal surface can be enumerated in
several ways, but the following stands out: because the fermionic state has a
larger eigenvalue than the bosonic, the projection of the walker distribution
using an antisymmetric trial function decays exponentially fast in imaginary
time, and the rate of decay grows with the particle number N– linearly
for extensive systems. Arnow et al. [1] proposed using walkers of opposite
signs and canceling close pairs using Green’s functions. This scales badly
in particle number since near neighbors become exponentially rare in the
many-dimensional configuration space used, and because accurate Green’s
functions can easily be constructed only over small Euclidean distances (or
equivalently, over short intervals of imaginary time.)

Kalos and Pederiva have been studying for some time a class of methods
intended to provide exact results for many-fermion systems that does not
depend on the specification of a nodal surface [2, 3]. A key element of those
methods is a population of pairs of random walkers of opposite algebraic signs
together with correlation of the diffusion steps of the random walks of the
members of a pair in such a way that they can meet with high probability.

This paper is devoted to a critical analytic and experimental study of the
correlated random walks to determine whether they are effective and espe-
cially to study the dependence on particle number– i.e., on dimensionality–
of the dynamics of cancellation.

The current version of Fermion Monte Carlo (FMC) may be outlined as
follows.

If the dimension of the physical space is d then the walkers that gen-
erate the Monte Carlo solution of the Schrödinger equation move in a dN
dimensional space. We study the behavior of pairs of such walkers that carry
plus and minus signs. Each is moved according to the dynamics of simple
diffusion Monte Carlo using a trial function for the symmetric ground state
as an importance function. The diffusion moves are correlated for the two
walkers, and when close, they can cancel each other. Then a “second stage
importance function,” which depends on the coordinates of both walkers, is
applied and the pair density is altered according to the ratio of this function
before and after the time step.

Because the branching weight using the symmetric importance function
may not be the same for both walkers, a special random process is invoked:
half the difference between the two weights is given to the walker with the
larger weight, which is then converted to a pair by applying an odd permu-
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tation. This creates no bias, since the permuted walker is given the opposite
sign and has the same future expectation as its partner. This process is called
“repairing”.

Cancellation of the pairs is essential to avoid the exponential growth of
the symmetric part of the walker density at the expense of the antisymmetric
part. Of course, the a priori chance of finding a pair close enough to cancel
in dN dimensions falls exponentially fast with N . The correlation of the
walkers has the effect of bringing them together so that cancellation becomes
likely.

But the fermion-boson energy gap increases with N , growing linearly
with N for extensive systems, like 3He or the homogeneous electron gas. The
question arises whether the correlation process brings the walkers together
fast enough for efficient cancellation in large systems.

This question has motivated a series of experiments to study the behavior
of the cancellation time, i.e., the time necessary for a pair of walkers to get
close and cancel. To avoid additional sources of uncertainty, we have made
the experiments with three different systems with a known imaginary-time
Green’s function for any number of particles. These systems are the free
gas, the harmonic oscillator, and an atom-like system in which an attractive
central harmonic force competes with a weaker repulsive harmonic force be-
tween every pair of particles. This latter is a simple solvable analog of an
atom, which we call the “harmonium atom.”

2 Cancellation time

Let us denote by G(X, Y ; τ) the Green’s function for vectors X and Y with
dN components describing a move from Y to X for a system of N particles
which move in a d-dimensional space; τ is the imaginary time. Let us consider
a pair of walkers, denoted by (X+

0 , X−
0 ), comprising a positive walker, X+

0 ,
and a negative one, X−

0 . The probability of cancellation of walkers of opposite
sign is described by the subtraction of Green’s functions in the following
way: the density of positive and negative walkers in the move of a pair from
(X+

0 , X−
0 ) to (X+, X−) will be:

ρ+(X; X+

0 , X−
0 , τ) = max[0, G(X, X+

0 ; τ) − G(X, X−
0 ; τ)] (1)

ρ−(X; X+

0 , X−
0 , τ) = max[0, G(X, X−

0 ; τ) − G(X, X+

0 ; τ)] , (2)

respectively. The move of the pair in FMC is the following:
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1. We move X+
0 to X+ according to G(X+, X+

0 ; τ).

2. We accept X+ with probability

ρ+(X+; X+
0 , X−

0 , τ)

G(X+, X+
0 ; τ)

. (3)

If the move is not accepted, the pair is canceled; counting the number
of steps taken by the pair from birth to death gives its cancellation
time.

3. If accepted, we move X−
0 to X− using

X− = X−
0 + X+ − X+

0 − 2
(X+ − X+

0 ) · (X+
0 − X−

0 )

(X+
0 − X−

0 )2
(X+

0 − X−
0 ) . (4)

This correlated move implies that X− has the same probability of ac-
ceptance as X+, Eq(3). (X+, X−) is the new position of the pair; we
go back to the step 1 if the moves are accepted.

It is obvious that, apart from number of particles, N , and the dimension
of the space they move, d, the cancellation time will also depend on the initial
distribution of the two walkers in the pair.

3 Free gas

In the case of the free gas, the exact Green function is:

G(X, Y ; τ) =
1

(2πτ)Nd/2
exp

[

−(X − Y )2

2τ

]

, (5)

The symmetric ground state wave function is constant.
We have to consider the infinite images of the vectors created by periodic

boundary conditions. Since we know the behavior of this system as a function
of density, we will take ρ = 1. Then the N particles are in a hypercube with
side, L, with L = N1/d. In a practical calculation if τ is small enough
compared to L2, we can pair each X with its single nearest image.

We begin by studying the behavior of cancellation time with the number
of particles. As a first case, we will choose the positions of the walkers
randomly and uniformly in the box of volume, N . We show the results in
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Figure 1: Behavior of the cancellation time with the number of particles,
N , moving in a d-dimension space.The two walkers in the pair are sampled
independently from an uniform distribution. The straight lines show tc ∝
N1+2/d.

Figure 1 for d = 1, 2, 3 as a function of the number of particles and compare
to a fit in the form

tc = CN1+2/d . (6)

The values in Figure 1 correspond to C = 0.0412, 0.0806, 0.26 for d = 1, 2, 3,
respectively. This behavior can be easily explained since, as implied by Eq.
(5), the cancellation time scales with the square of the distance. The max-
imum distance in an axis is L/2 so in the full space must be (Nd)1/2L/2.
This, combined with L = N1/d, explains the behavior that we observe.

This conclusion– that the cancellation time grows faster than the differ-
ence of energy between the fermionic and the bosonic ground states– is a
consequence of choosing initial configurations at random. In fact, in FMC
one has the freedom to choose other relationships between plus and minus
walkers. One important option is to start with a pair of walkers with all the
coordinates of the particles equal except for one pair of particles that have
their coordinates interchanged– that is that undergo a pair permutation. In-
terchanging the nearest pair of like-spin particles gives the smallest initial
Euclidean separation of the walkers.
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Figure 2: The same as Figure 1 but the two walkers now have the same
coordinates except for two particles,chosen at random, which are exchanged.
The straight lines show tc ∝ N2/d.

In our experiments, we have studied two alternative strategies for gener-
ating initial pairs of walkers. The coordinates of the plus walker are chosen
at random in the periodic box. We set the coordinates of the minus walker to
be the same except for two particles whose coordinates are interchanged. In
the first case, we choose this pair at random, and in the second, we exchange
the closest pair. Following our previous explanation, we can see that in the
first case, the cancellation time must scale as

tc = CN2/d . (7)

and this is what we get as shown in Figure 2. The parameters obtained from
fits to Eq. (7) are C = 0.165, 0.25 for d = 2, 3, respectively.

The results obtained for the second case, which is the one used by FMC,
are shown in Figure 3. In this case the cancellation time is independent of
the number of particles. This indicates that, at least for the free system,
the cancellation of pairs will remain an efficient tool when the number of
particles of the system becomes bigger.

It is qualitatively plausible that the mean time to cancellation is smaller
when pairs are created by permuting the closest pair; the average separa-
tion of close pairs is smaller than that of pairs chosen at random. This is

6



 0.4

 0.45

 0.5

 0.55

 0.6

 10  100  1000

t c

N

d = 2

d = 3

Figure 3: The same as Figure 2 but the two exchanged particles have been
chosen to be the closest among all pairs.

illustrated in Figures 4 and 5, where the average pair separation in the free
system is compared when pairs are chosen at random versus as closest, in
the cases of d = 2, 3. This was in fact the motivation for using close pairs in
the formulation of Fermion Monte Carlo.

There is another aspect that is present in FMC that we have not taken
into account. This is the fact that in FMC the pairs may produce new
pairs– the process we call “repairing”– while in our model the pairs can
only annihilate. We simulate repairing by artificially creating a new pair of
walkers in the present position of the pair with probability pδτ , with p a
constant and δτ the time step. Of course, now the cancellation time refers
to the total time needed to annihilate the initial pair and all its offspring.
An immediate question is whether the inclusion of branching modifies the
scaling of the cancellation time with the number of particles. We studied this
and concluded that the cancellation time becomes longer but the tendency
remains the same.
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Figure 4: Average pair separation in a system of N particles when both
configurations are chosen at random. The straight line represents < rij >∝
N1/d
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Figure 5: Average pair separation in a system of N particles when the sec-
ond configuration is the same as the other except for permuting the closest
particle pair. The straight line represents < rij >∝ N−1/d
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4 Analytical results for the free gas

When a pair moves according to correlated sampling for the free gas, the
Euclidean distance between the walkers diffuses in one dimension. Because
we use periodic boundary conditions, the walker is absorbed at x = 0 and x =
Z. The orientation of the pair is not necessarily parallel to any coordinate
axis so that Z varies from L to d1/2L where L is the length of a side of the
box.

The evolution simply requires the solution of the equation

D

2

∂2G(x, x0; t)

∂x2
− ∂G(x, x0; t)

∂t
= 0 , (8)

where D is the diffusion constant and with the initial condition G(x, x0; 0) =
δ(x − x0). We can write

G(x, x0; t) =
∞
∑

k=1

φk(x)φk(x0)e
−Ekt (9)

where

−D

2

∂2φk(x)

∂x2
= Ekφk(x) , (10)

with φk(0) = φk(Z) = 0. This leads to the solutions

φk(x) =

√

2

Z
sin

(

kπx

Z

)

Ek =
D(kπ)2

2Z2
. (11)

In order to calculate the cancellation time of a pair, we build

ρ(x0; t) =
∫ Z

0

G(x, x0; t) dx , (12)

the probability of survival of a pair initially at a distance x0 during a time t
(ρ(x0; 0) = 1 and ρ(x0;∞) = 0). The probability of cancellation is 1−ρ(x0; t).
If we differentiate this with respect to time, we obtain the distribution of
times of cancellation, and its mean will correspond to the time needed to
cancel a pair initially at x0. This is

tc(x0) =
∫ ∞

0

[−ρ′(x0; t)]t dt . (13)
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So if we define

ck =
∫ Z

0

φk(x) dx =

√
2Z

kπ

[

1 − (−1)k
]

, (14)

we can write

ρ(x0; t) =
∞
∑

k=1

ckφk(x0)e
−Ekt (15)

−ρ′(x0; t) =
∞
∑

k=1

ckEkφk(x0)e
−Ekt (16)

tc(x0) =
∞
∑

k=1

ck

Ek

φk(x0) (17)

Consider the function f(x) = x(Z − x)/D and expand it in eigenfunctions
{φk(x)}∞k=1. The result is

f(x) =
∞
∑

k=1

ck

Ek
φk(x) = tc(x);

tc(x) = x(Z − x)/D. (18)

The spatial variable we are using here is the difference between two variables
with perfect negative correlation so D is four times the diffusion constant of
one of these variables.

We present the results in Figure 6 and compare them with the function

tc = Ar(B − r) (19)

where for a three-dimension system and branching term of p = 1.15, we
obtain A = 0.79, 0.82 and B = 3.07, 5.96 for N = 10, 80, respectively. The
fits are very good.

5 Harmonic oscillator

We use the harmonic oscillator as a simple model of an interacting system.
The diffusion is described by the exact Green’s function [4], modified by the
symmetric ground state [5]. This is

eNdτ/2φ(X)G(X, Y ; τ)

φ(Y )
=

1

(2πe−τ sinh τ)Nd/2
exp

[

(X − e−τY )2

2e−τ sinh τ

]

(20)
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Figure 6: The cancellation time, tc, as a function of the initial distance of
the pair, r, for three-dimension systems with N = 10, 80 particles.

where φ(X) = exp(−X2/2). In the case of the harmonic oscillator, the
box is not necessary and we have sampled the initial position of the walkers
according to |φ(X)|2.

The situation is now different from that in the free gas case since the size
of the system does not grow to keep the density constant. Moreover, the
attraction provided by the harmonic oscillator potential causes the walkers
to stay close to each other. Both facts will be reflected in the behavior of
the cancellation time with the number of particles. We will study the same
three situations considered in the case of the free gas.

Let us begin with the case where the two walkers in the pair are sampled
independently from the ground-state wave function. Figure 7 shows that the
cancellation time behaves as

tc = A + B ln(N) , (21)

with A = 0.67, 0.83 and B = 0.49, 0.50 for d = 2, 3, respectively. The
cancellation time grows with the number of particles but slower than any
positive power of N . This behavior is better than the two first cases for
the free gas. We can also see that, contrary to the behavior of the free gas,
the cancellation time is larger for the three dimensional case than for the
two-dimensional case.
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Figure 7: Cancellation time versus the number of particles for the harmonic
oscillator when the walkers in the pair are chosen independently.

This first case is the worst of the three cases, since all the particles in both
walkers are chosen independently. In the rest of the study, all the particles
in the plus walker are chosen independently but all the particles of the minus
walker but two are chosen to have the same coordinates as the corresponding
particle in the plus walker. This pair of particles, whose coordinates are
interchanged to create the minus walker from the plus walker, can be chosen
at random or chosen as the nearest pair of particles in the plus walker.

Figure 8 shows that, when the pair of particles to be exchanged is ran-
domly chosen, the cancellation time is independent of the number of particles.

Finally, if the exchanged pair is the closest pair, the cancellation time
actually decreases as the number of particles increases, as shown in Figure 9
where the form

tc = CN−2/d , (22)

provides a good fit with C = 2.19, 1.97 for d = 2, 3, respectively. From this,
we conclude that for the harmonic oscillator as well, the dynamic correlation
of the pairs will be an efficient mechanism for bringing pairs of walkers close
together so that cancellation becomes highly probable.

We present additional results using repairing with p = 1.25 for a system
of 640 particles moving in a three-dimensional space in Figure 10. We show
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Figure 8: Cancellation time versus the number of particles for the harmonic
oscillator when the pair of particles exchanged in the pair of walkers is chosen
at random.
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Figure 9: Cancellation time versus the number of particles for the harmonic
oscillator when the pair of particles exchanged in the pair of walkers is chosen
to be the closest.
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Figure 10: The cancellation time, tc, as a function of the initial distance
of the pair, r, for a three-dimensional system with N = 640 particles in a
harmonic oscillator potential.

also a fit using

tc =
r(1 + Ar)

Br + C
; (23)

the values of the parameters are A = 7.6 × 10−3, B = 0.27 and C = 0.88.
We study again the dependence of the variation of cancellation time with

the number of particles when there is branching. The results show that when
the number of particles is large enough, the branching case scales the same
as with no branching.

These results can be used to refine the “second-stage importance func-
tion” to include its correct dependence on the separation of the two walkers.

This also suggests that using different permutations, which result in dif-
ferent walker pair separations, may be a useful tool in the method.

6 Harmonium atom

Finally we consider a modification of the harmonic oscillator by including a
repulsive potential quadratic in the distance between pairs of particles. We
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use the Hamiltonian

H = − h̄2

2m

N
∑

k=1

∇2

xk
+

1

2
mNω2

N
∑

k=1

x2

k −
1

2
mω′2

N
∑

l>k

x2

kl , (24)

where xk is a d-dimensional vector and xkl is the distance between particle k
and particle l. We have multiplied the attractive part by N to compensate for
the smaller number of particles as compared to the number of pairs. Making

the change of variables rk =
√

m
√

Nω
h̄

xk and defining β = ω′

ω
, we can write

H =
h̄
√

Nω

2



−
N
∑

k=1

∇2

rk
+

N
∑

k=1

r2

k −
β2

N

N
∑

l>k

r2

kl



 . (25)

Since the potential is a quadratic form, we can look for a further change of
variables which diagonalizes it. This is provided by

R1 =
1√
N

N
∑

k=1

rk

Rk =
1

√

k(k − 1)

(

k−1
∑

l=1

rl − (k − 1)rk

)

k = 2, . . . , N.

In terms of these new variables, we can rewrite the Hamiltonian as

H =
h̄
√

Nω

2

[

−
N
∑

k=1

∇2

Rk
+ R2

1 + (1 − β2)
N
∑

k=2

R2

k

]

, (26)

obtaining a system of uncoupled harmonic oscillators if γ2 = 1 − β2 ≥ 0.
We have studied this using d = 3 and γ = 0.1 and, as in the previous sec-

tions, emphasizing the behavior with N and with three choices for creating
pairs. The results are presented in Figures 11, 12 and 13. The first one cor-
responds to the case where the walkers in the pair are chosen independently.
The cancellation time increases linearly with the logarithm of N as was true
in the case without repulsion (γ = 1). We fit using Eq.(21) and obtained
A = 8.1 and B = 5.

Figure 12 shows the results when the second walker is formed by exchang-
ing a randomly chosen pair of particles in the first walker. We obtain the
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Figure 11: Cancellation time versus the number of particles for Harmonium
with γ = 0.1 and d = 3 when the walkers in the pair are chosen independently.
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Figure 12: Cancellation time versus the number of particles for Harmonium
with γ = 0.1 and d = 3 when the pair of particles exchanged in the pair of
walkers is chosen at random.
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Figure 13: Cancellation time versus the number of particles for the Harmo-
nium with γ = 0.1 and d = 3 when the particles exchanged form the closest
pair.

same behavior as in the case γ = 1: a constant cancellation time as a function
of the number of particles.

Finally, in Figure 13 the pair of particles exchanged is the closest. Here
the cancellation time decreases when the number of particles increases. We
used Eq.(22) to fit and obtained C = 19.8

In all cases the cancellation time is greater than when there is no no re-
pulsion (γ = 1). A comparison between the new values of A, B, C and the
constant cancellation time for the second case compared to those in the pre-
vious section (which correspond to no repulsion) show that they are roughly
multiplied by a factor of 10. This can be easily explained by examining the
exact Green’s function, modified by the symmetric ground state when the
oscillator constant is γ instead of 1. This is

eγdτ/2φ(X)G(X, Y ; τ)

φ(Y )
=

(

γ

2πe−γτ sinh(γτ)

)d/2

exp

[

−γ(X − e−γτY )2

2e−γτ sinh(γτ)

]

(27)
where φ(X) = exp(−γX2/2). It reduces to the case where γ = 1 using
τ ′ = γτ and X ′ =

√
γX. This shows that the modified cancellation time is

just the cancellation time with no repulsion divided by γ.

17



7 A model system

As a final application, we study how the cancellation time scales with the
number of particles in a system whose Green’s function is not known exactly.
We use an approximate Green function in the short time limit [6]. The latter
can be written as:

G(X, Y ; τ) =
1

(2πτ)Nd/2
exp

[

−(X − Y − τF (Y ))2

2τ

]

exp[(ET − EL(X))τ ] ,

(28)
We have included importance sampling with a Jastrow approximation to a
trial function for the symmetric ground state φ(X) that determines

F (Y ) =
∇φ(Y )

φ(Y )
, (29)

and the local energy

EL(X) =
H(X)φ(X)

φ(X)
= −∇2φ(X)

2φ(X)
+ V (X) . (30)

This short-time Green function implies “drift” and “diffusion” derived from
the first (shifted) exponential and a branching term, derived from the second
exponential. The Gaussian part has already been used in this paper and we
treat it in the same way as for the free and the harmonic systems. However,
the branching part implies population variations and causes plus and minus
walkers to have different weights given by

w± = exp[(ET − EL(X±))τ ] . (31)

In order to retain the structure of a population of pairs of walkers, we define

wp = min(w+, w−); (32)

wr =
max(w+, w−) − min(w+, w−)

2
. (33)

wp gives the expected number of pairs of new walkers generated by the smaller
of w+, w−; the extra weight wr gives the expected number of additional pairs
created by “repairing”. This consists in taking the walker with the larger
weight, max(w+, w−) and generating a new partner by exchanging only the
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closest pair of particles of the original configuration. Because both of the
walkers of this new pair have the same expectation for future contributions
weighted with antisymmetric test functions, this accounts for all weights and
is unbiased.

In studying the time to cancellation, it is not necessary to carry out the
branching. Instead we may define:

pp =
wp

wp + wr

, pr =
wr

wp + wr

. (34)

Then with probability pp, the pair continues drift and correlated diffusion,
and otherwise the pair “repairs” using the nearest pair permutation as dis-
cussed above.

This avoids the necessity for population control and eigenvalue estima-
tion, while correctly balancing the correlated diffusion against its interruption
by repairing. It also correctly treats the decreased probability of repairing as
the walkers become close and the two weights, w+ and w−, become equal.

We present results with the so-called Pöschl-Teller potential [7]:

V (X) =
N
∑

j>i

V (rij) = −
N
∑

j>i

2µ2

cosh2(µrij)
. (35)

We use values of the parameter µ that give an infinite scattering length [8].
We will use a trial wavefunction of the form

φ(X) =
N
∏

l>k

f(rlk) , (36)

where the correlation function f(r) is the solution of the equation

−∇2f(r) + V (r)f(r) = λf(r). (37)

We use a healing distance, dh defined by

ρ

2

∫ dh

0

f 2(r) d~r = 1. (38)

and require that f(r ≥ dh) = 1 and f ′(dh) = 0.
We show in Fig. 14 results for the three dimensional case (d = 3) when

both walkers of the initial pair are chosen at random inside the box. In this
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Figure 14: Cancellation time versus the number of particles in the short time
limit when the walkers in the pair are chosen independently.

example the efficiency of the cancellation process improves as the number
of particles grows. We also show in this figure a fit using Eq. (22) with
C = 0.24. This fit also appeared in the harmonic oscillator case when the
plus walker was chosen at random and the minus walker was equal to the plus
one except for the permutation of the nearest pair of particles. This holds
here without the special choice of initial pairs because repairing is guaranteed
to occur sometime in the random walk. The drifting force caused by an
attractive potential with a minimum at the origin brings the pairs together,
accelerating the annihilation process. Cancellation is as fast as in the case
of the harmonic oscillator. In other words, the repairing process, required
because an approximate importance function is used in the random walk,
accelerates the cancellation process. We expect this to hold quite generally.

8 Conclusions

Our study of the dynamics of correlated diffusion has been intended to clarify
their use in Quantum Monte Carlo computations of fermionic systems. It
is possible, of course, that they may be of wider interest, because in an
important sense, they show how correlated random walkers can be made to
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meet in spaces of very high dimension.
Within the framework of Quantum Monte Carlo, our results confirm that

for systems like those we have studied– non-interacting fermions, harmonic
oscillator systems, and the extensive gas of atoms interacting by way of the
Pöschl-Teller potential– the exponential complexity thought to exist when a
fixed node is not imposed can be overcome.

The fact that walkers eventually meet implies that the decay of signal
to noise in the limit of very large imaginary time can be overcome with the
use of correlated diffusion leading to cancellation. The fact that the time to
cancellation scales more slowly than linearly in the number of particles means
that a computation will not require exponentially large computing time for
large systems.

It remains to be seen whether these conclusions hold more generally, but
at face value, they imply strongly that the “fermion sign problem” is not
computationally intractable as is widely believed.
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[7] G. Pöschl and E. Teller, Z. Phys. 83, 143 (1933).

[8] S.Y. Chang, V.R. Pandharipande, J. Carlson and K.E. Schmidt, Phys.

Rev. A 70, 043602 (2004).

22




